Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 14(1): 2835, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2322764

ABSTRACT

Determining SARS-CoV-2 immunity is critical to assess COVID-19 risk and the need for prevention and mitigation strategies. We measured SARS-CoV-2 Spike/Nucleocapsid seroprevalence and serum neutralizing activity against Wu01, BA.4/5 and BQ.1.1 in a convenience sample of 1,411 patients receiving medical treatment in the emergency departments of five university hospitals in North Rhine-Westphalia, Germany, in August/September 2022. 62% reported underlying medical conditions and 67.7% were vaccinated according to German COVID-19 vaccination recommendations (13.9% fully vaccinated, 54.3% one booster, 23.4% two boosters). We detected Spike-IgG in 95.6%, Nucleocapsid-IgG in 24.0%, and neutralization against Wu01, BA.4/5 and BQ.1.1 in 94.4%, 85.0%, and 73.8% of participants, respectively. Neutralization against BA.4/5 and BQ.1.1 was 5.6- and 23.4-fold lower compared to Wu01. Accuracy of S-IgG detection for determination of neutralizing activity against BQ.1.1 was reduced substantially. We explored previous vaccinations and infections as correlates of BQ.1.1 neutralization using multivariable and Bayesian network analyses. Given a rather moderate adherence to COVID-19 vaccination recommendations, this analysis highlights the need to improve vaccine-uptake to reduce the COVID-19 risk of immune evasive variants. The study was registered as clinical trial (DRKS00029414).


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Bayes Theorem , COVID-19/prevention & control , COVID-19 Vaccines , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
2.
Cancers (Basel) ; 14(22)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2109948

ABSTRACT

BACKGROUND: Two-dose COVID-19 vaccination often results in poor humoral response rates in patients with hematologic malignancies (HMs); yet responses to COVID-19 booster vaccines and the risk of COVID-19 infection post-booster are mostly uncertain. METHODS: We included 200 outpatients with HMs and predominantly lymphoid neoplasms (96%, 191/200) in our academic center and reported on the humoral responses, which were assessed by measurement of anti-spike IgG antibodies in peripheral blood as early as 14 days after mRNA-based prime-boost vaccination, as well as factors hampering booster efficacy. Previous basic (double) immunization was applied according to the local recommendations with mRNA- and/or vector-based vaccines. We also report on post-booster COVID-19 breakthrough infections that emerged in the Omicron era and the prophylaxis strategies that were applied to poor and non-responders to booster vaccines. RESULTS: A total of 55% (110/200) of the patients achieved seroconversion (i.e., anti-spike protein IgG antibody titer > 100 AU/mL assessed in median 48 days after prime-boost vaccination) after prime-boost vaccination. Multivariable analyses revealed age, lymphocytopenia, ongoing treatment and prior anti-CD20 B-cell depletion to be independent predictors for booster failure. With each month between anti-CD20-mediated B-cell depletion and booster vaccination, the probability of seroconversion increased by approximately 4% (p < 0.001) and serum-antibody titer (S-AbT) levels increased by 90 AU/mL (p = 0.011). Notably, obinutuzumab treatment was associated with an 85% lower probability for seroconversion after prime-boost vaccination compared to rituximab (p = 0.002). Of poor or non-responders to prime-boost vaccination, 41% (47/114) underwent a second booster and 73% (83/114) underwent passive immunization. COVID-19 breakthrough infections were observed in 15% (29/200) of patients after prime-boost vaccination with predominantly mild courses (93%). Next to seroconversion, passive immunization was associated with a significantly lower risk of COVID-19 breakthrough infections after booster, even in vaccine non-responders (all p < 0.05). In a small proportion of analyzed patients with myeloid neoplasms (9/200), the seroconversion rate was higher compared to those with lymphoid ones (78% vs. 54%, accordingly), while the incidence rate of COVID-19 breakthrough infections was similar (22% vs. 14%, respectively). Following the low frequency of myeloid neoplasms in this study, the results may not be automatically applied to a larger cohort. CONCLUSIONS: Patients with HMs are at a high risk of COVID-19 booster vaccine failure; yet COVID-19 breakthrough infections after prime-boost vaccination are predominantly mild. Booster failure can likely be overcome by passive immunization, thereby providing immune protection against COVID-19 and attenuating the severity of COVID-19 courses. Further sophistication of clinical algorithms for preventing post-vaccination COVID-19 breakthrough infections is urgently needed.

3.
Viruses ; 14(7)2022 06 21.
Article in English | MEDLINE | ID: covidwho-1964113

ABSTRACT

Membrane fusion constitutes an essential step in the replication cycle of numerous viral pathogens, hence it represents an important druggable target. In the present study, we established a virus-free, stable reporter fusion inhibition assay (SRFIA) specifically designed to identify compounds interfering with virus-induced membrane fusion. The dual reporter assay is based on two stable Vero cell lines harboring the third-generation tetracycline (Tet3G) transactivator and a bicistronic reporter gene cassette under the control of the tetracycline responsive element (TRE3G), respectively. Cell-cell fusion by the transient transfection of viral fusogens in the presence of doxycycline results in the expression of the reporter enzyme secreted alkaline phosphatase (SEAP) and the fluorescent nuclear localization marker EYFPNuc. A constitutively expressed, secreted form of nanoluciferase (secNLuc) functioned as the internal control. The performance of the SRFIA was tested for the quantification of SARS-CoV-2- and HSV-1-induced cell-cell fusion, respectively, showing high sensitivity and specificity, as well as the reliable identification of known fusion inhibitors. Parallel quantification of secNLuc enabled the detection of cytotoxic compounds or insufficient transfection efficacy. In conclusion, the SRFIA reported here is well suited for high-throughput screening for new antiviral agents and essentially will be applicable to all viral fusogens causing cell-cell fusion in Vero cells.


Subject(s)
COVID-19 , Herpesvirus 1, Human , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Genes, Reporter , Herpesvirus 1, Human/genetics , Humans , Membrane Fusion , SARS-CoV-2/genetics , Tetracyclines , Vero Cells
4.
Viruses ; 14(7):1354, 2022.
Article in English | MDPI | ID: covidwho-1893904

ABSTRACT

Membrane fusion constitutes an essential step in the replication cycle of numerous viral pathogens, hence it represents an important druggable target. In the present study, we established a virus-free, stable reporter fusion inhibition assay (SRFIA) specifically designed to identify compounds interfering with virus-induced membrane fusion. The dual reporter assay is based on two stable Vero cell lines harboring the third-generation tetracycline (Tet3G) transactivator and a bicistronic reporter gene cassette under the control of the tetracycline responsive element (TRE3G), respectively. Cell–cell fusion by the transient transfection of viral fusogens in the presence of doxycycline results in the expression of the reporter enzyme secreted alkaline phosphatase (SEAP) and the fluorescent nuclear localization marker EYFPNuc. A constitutively expressed, secreted form of nanoluciferase (secNLuc) functioned as the internal control. The performance of the SRFIA was tested for the quantification of SARS-CoV-2- and HSV-1-induced cell–cell fusion, respectively, showing high sensitivity and specificity, as well as the reliable identification of known fusion inhibitors. Parallel quantification of secNLuc enabled the detection of cytotoxic compounds or insufficient transfection efficacy. In conclusion, the SRFIA reported here is well suited for high-throughput screening for new antiviral agents and essentially will be applicable to all viral fusogens causing cell–cell fusion in Vero cells.

SELECTION OF CITATIONS
SEARCH DETAIL